
Thorsten Kurth

Optimizing Code for 
Intel Xeon Phi 7250 
(Knight’s Landing)

NUG	Training,	06/09/2017



2

Multicore vs. manycore
• multicore	(Edison)	

‣ 5000	nodes	

‣ 12	physical	cores/CPU	

‣ 24	HW	threads/CPU	

‣ 2.4-3.2	GHz	

‣ 4	DP	ops/cycle	

‣ 30	MB	L3	cache	

‣ 64	GB/node 

‣ 100	GB/s	memory	
bandwidth

• manycore	(Cori-KNL)	

‣ 9600	nodes	

‣ 68	physical	cores/CPU	

‣ 272	HW	threads/CPU	

‣ 1.2-1.6	GHz	

‣ 2x8	DP	ops/cycle	

‣ no	L3	cache	

‣ 16	GB/node	(fast)  
96	GB/node	(slow)	

‣ 450	GB/s	memory	bandwidth	
(fast)



Recompile and go?

3

• x86-64	compatible:	can	use	codes	for	older	architectures	or	recompile	

• self-hosted:	no	need	for	offloading

• median	speedup	vs.	Edison:	1.15x	

• median	speedup	vs.	Haswell:	0.70x



Why should I optimize my code?

• pros	

• get	more	for	your	bucks:	making	efficient	use	of	existing	manycore	HPC	
systems	

• fast	success	possible:	many	low	hanging	fruits	in	unoptimized	codes	

• investing	in	the	future:	heterogeneous	architectures	are	energy	efficient	
and	thus	will	stay	around	for	a	while	

• benefits	on	multicore:	optimizations	targeting	manycore	architectures	
mostly	improve	performance	on	multicore	systems	as	well	

• cons	

• effort:	many	most	beneficial	optimizations	require	significant	code	changes	

• investing	in	the	future:	what	if	I	bet	on	the	wrong	horse?

4



Optimization targets

• single	node	performance	

• start	here:	for	representative	local	problem	size,	single	node	
performance	is	upper	bound	of	what	you	get	in	multi-node	

• many	optimization	opportunities,	fast	turnaround	times	

• many	profiling	tools	available	

• multi-node	performance	

• fewer	optimization	opportunities,	profiling/debugging	tedious	

• IO	performance	

• not	many	opportunities	for	improvement

5



Where do I start?

• get	to	know	your	application:	don’t	assume	you	already	do!	

• determine	hotspots	

• manual	timers:	be	careful	with	thread	safety/sync	barriers	

• profiling	tools:	NERSC	offers	a	lot	

• CrayPat	(very	lightweight)	

• Advisor	(find	time-consuming	loops)	

• VTune	(can	do	a	lot	of	things	but	also	very	slow)	

• MAP	(comparably	lightweight)	

• found	hotspots,	now	what?

6

http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/
http://www.nersc.gov/users/software/performance-and-debugging-tools/MAP/


What architectural feature shall I target?

• KNL	has	many	new	features	to	explore	

• many	threads	

• bigger	vector	units	

• complex	intrinsics	(ISA)	

• multiple	memory	tiers	

• understand	your	hotspots	

• compute	bound:	more	threads,	vectorization,	ISA	

• memory	BW	bound:	memory	tiers,	more	threads	

• memory	latency	bound:	more	threads,	vectorization

7



Prerequisites - compile and run

• recompile	your	code	for	KNL:	code	for	older	CPUs	is	supported	but	
those	do	not	make	full	use	of	new	architecture	

• Cray	(wrappers):	  
module swap craype-haswell craype-mic-knl 

• Intel: -xmic-avx512 

• GNU:	-march=knl 

• use	proper	OpenMP	settings: 
export OMP_NUM_THREADS=64 
export OMP_PLACES=threads 
export OMP_PROC_BIND=spread	

• use	job-script-generator	on	my.nersc.gov	or	NERSC	website		

• node	configuration:	use	-C knl,quad,cache	as	a	start

8

https://my.nersc.gov/script_generator.php
http://my.nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/general-running-jobs-recommendations/


Prerequisites - #FLOPS

• 																				:	number	of	floating	point	operations	

• manual	calculation:		

• float	addition	and	multiplication:	+1	

• complex	multiplication:	+6	(4	multiplications+2	additions)	

• etc.	

• measure	with	SDE: 
 
 
 
 

• using	SDE	is	more	precise,	because	it	accounts	for	masking

9

#FLOPS

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


Prerequisites - #BYTES

10

• 																				:	number	of	bytes	transferred	from	main	memory	

• manual	calculation	(not	recommended,	but	good	check):		

• count	the	bytes	of	data	to	be	read	and	written	in	the	kernel	

• does	not	account	for	data	reuse	through	caching	

• measure	with	VTune: 
 
 
 
 
 

• precisely	obtain	uncore	counter	events

#BYTES

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


What is limiting my performance?

• Roofline	performance	model		

• arithmetic	intensity 
 

• performance 
 

• plot	P	vs.	AI	with	architectural	roofline	R

11

AI =
#FLOPS

#BYTES

P =
#FLOPS

time[s]

R(AI) = min(memory bw ·AI, peak flops)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Example roofline

12



Example roofline

12

memory bandwidth bound



Example roofline

12

use MCDRAM



Example roofline

12

compute bound
use MCDRAM



Example roofline

12

use MCDRAM

utilize vectorization



Example roofline

12

(possibly) memory latency bound
use MCDRAM

utilize vectorization



Example roofline

12

use MCDRAM

utilize vectorization

threading, vectorization



Example roofline

12

use MCDRAM

utilize vectorization

threading, vectorization

improve AI



How to improve AI?

• definition	of	arithmetic	intensity 
 
 

• two	possibilities	

• number	of	flops	⬆ number	of	bytes	➡  

(not	possible/easy,	choice	of	algorithm	determines	flops)

• number	of	flops ➡ number	of	bytes ⬇ 

• reality:	tradeoff	between	both

13

AI =
#FLOPS

#BYTES



Create more work/thread

• loop/kernel	fusion:	improves	cache	re-use	and	reduce	overhead 
 
 
 
 
 

• collapse	nested	loops: 
 

• rearrange	data	structures:	move	OpenMP	out	(coarse	grain)

14



Loop transformations I

• loop	tiling:	improves	cache	re-use	and	can	significantly	improve	performance

15



Loop transformations I

• loop	tiling:	improves	cache	re-use	and	can	significantly	improve	performance

• especially	relevant	on	KNL	because	of	missing	L3

• blocking	to	shared	L2	(512KiB)	usually	good

• was	my	transformation	successful?	check	L1,	L2	miss	rates,	e.g.	in	VTune

15



Loop transformations II

• short	loop	unrolling:	helps	the	compiler	vectorizing	the	right	loops 
 
 
 
 
 
 

16



Loop transformations II

• short	loop	unrolling:	helps	the	compiler	vectorizing	the	right	loops 
 
 
 
 
 
 

• unrolling	pragmas	are	helpful	too

• check	compiler	optimization	reports

• use	Intel	Advisor

16



Data alignment

• align	(and	pad)	data	to	64bit	words	to	improve	prefetching	

• can	be	done	easily	in	major	programming	languages	

• FORTRAN:	-align array64byte  
(ifort,	gfortran	does	it	automagically) 

• C/C++:	aligned_alloc(64, <size>),  
__attribute__ ((aligned(64))), __declspec(align(64))	

• C++	trick:	overload	new operator	

• advanced:	manually	pad	data	if	array	extents	are	power	of	2	to	
minimize	cache	associativity	conflicts

17



Make use of ISA

• help	the	compiler	to	generate	efficient	intrinsics

18

runtime example for app with kernel: 1.2 sec



Make use of ISA

• help	the	compiler	to	generate	efficient	intrinsics

18

runtime example for app with kernel: 1.2 sec

if condition inside loop



Make use of ISA

• help	the	compiler	to	generate	efficient	intrinsics

18

runtime example for app with kernel: 0.8 sec

1.5x speedup



Reduced precision math

• transcendental	functions,	square	roots,	etc.	are	expensive	

• use	-fp-model fast=2 -no-prec-div	during	compilation	

• replace	divisions	by	constants	with	multiplications	with	inverse 
 
 

• do	not	expect	too	much:	benefits	usually	only	visible	in	heavily	
compute-bound	code	sections	

• reduced	precision	might	not	always	be	acceptable

19



Benefits of AVX-512

20

• median	speedup:	1.2x	

• benefits	can	be	larger	than	2x	 
(probably	more	efficient	prefetching)	

• automatically	enabled	when	compiling	for	KNL	architecture



Use MCDRAM

• always	use	16GiB	on-package	memory	(MCDRAM)  
 
 
 
 
 
 

• cache	works	well:	request	with	-C knl,cache 

• code	fits	into	16GiB:	request	-C knl,flat	and	  
prepend	executable	with	numactl -m 1

21



A note on heap allocation

• KNL	memory	allocation	is	comparably	slow	

• avoid	allocating	and	de-allocating	memory	frequently	

• remove	allocations/deallocations	in	loop	bodies	or	functions	which	are	called	
many	times	

• too	involved?	pool	allocator	libraries	(e.g.	Intel	TBB	scalable	memory	pools)	

• pros:	

• overloads	new/malloc,	no/minimal	source	code	changes	necessary	

• can	give	significant	performance	boost	for	certain	codes	

• take	care	of	thread-safety	

• cons:	

• memory	footprint	needs	to	be	known/computed	in	advance	

• code	might	become	less	portable

22

https://software.intel.com/en-us/node/506255


Multi-node optimizations

• single	KNL	thread	cannot	saturate	Aries	injection	rate 
 
 
 
 
 
 
 

• use	thread-level	communication	or	multiple	MPI	ranks	per	node	

• recommended:	>4	ranks	per	node	

• dedicate	cores	to	OS:	-S <ncores>	in	sbatch	(ncores=2	good	choice)

23



Hugepages, DMAPP and hardware AMO

• hugepages	can	reduce	Aries	TLB	misses	

• load	corresponding	module	at	compile	and	runtime 
 

• can	use	different	modules	at	compile	and	runtime	

• MPI-collective-heavy	codes:	enable	DMAPP	(add	-ldmapp)  
export MPICH_RMA_OVER_DMAPP=1 
export MPICH_USE_DMAPP_COLL=1 
export MPICH_NETWORK_BUFFER_COLL_OPT=1 

• enable	hardware	AMO	for	MPI-3	RMA	atomics 
export MPICH_RMA_USE_NETWORK_AMO=1

24



Some notes on IO

25

Single	Core	I/O	Performance	on	Cori

Re
la
4v
e	
Pe
rfo

rm
an
ce
	(	
KN

L	
/	H

SW
	)

0.0

0.3

0.6

0.9

1.2

W
rit
e	
Ba

nd
w
id
th
	(M

B/
s)

0

300

600

900

1200

Buffered	I/O Sync	I/O Direct	I/O

HSW
KNL
KNL/HSW



Use multiple processes

• use	more	processes	(e.g.	with	MPIIO)	

• unfortunately,	no	good	threaded	IO	solutions	available	yet	

• always:	pool	(write	big	chunks),	reduce	file	operations	(open,	close)	

• large	files:	burst	buffer

26

http://www.nersc.gov/users/computational-systems/cori/burst-buffer/


Does it help?

27

• median	speedup	vs.	Edison:	1.15x	

• median	speedup	vs.	Haswell:	0.70x



Does it help?

27

• median	speedup	vs.	Edison:	1.8x	

• median	speedup	vs.	Haswell:	1.0x



Summary

• single	node	performance	(go	for	that	one	first)	

• loop	fusion	and	tiling	

• ensure	good	vectorization	

• use	MCDRAM	

• multi-node	performance	

• hugepages	

• DMAPP	

• IO	performance	

• use	multiple	nodes,	pool	IO,	reduce	file	operations	to	minimum

28



NERSC training material

• running	jobs	

• process/thread	binding	

• code	profiling	and	tools	

• measuring	arithmetic	intensity	(AI)	

• improving	OpenMP	scaling	

• vectorization	help	

• how	to	use	MCDRAM	

• NESAP	case	studies

29

http://www.nersc.gov/users/computational-systems/cori/running-jobs/
https://www.nersc.gov/users/software/programming-models/openmp/process-and-thread-affinity/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/profiling/
http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/improving-openmp-scaling/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/vectorization/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/using-on-package-memory/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/application-case-studies/


Thank you

30


